2020-2021 Air Monitoring Network Plan

City of Philadelphia Department of Public Health Air Management Services

July 1, 2020

Executive Summary

Philadelphia has an air monitoring network of ten air monitoring stations that house instruments that measure ambient levels of gaseous, solid, and liquid aerosol pollutants. It is operated by the City of Philadelphia's Department of Public Health, Air Management Services (AMS), the local air pollution control agency for the City of Philadelphia. This network is part of a broader network of air monitoring operated by our local states of Pennsylvania, New Jersey, Delaware and Maryland that make up the Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metropolitan Statistical Area (MSA).

The United States Environmental Protection Agency (US EPA) created regulations on how the air monitoring network is to be set up. These regulations can be found in Title 40 – Protection of Environment in the Code of Federal Regulations (CFR) Part 58 – Ambient Air Quality Surveillance, located online at: <u>http://www.ecfr.gov/cgi-bin/text-idx?SID=86f79e0c1262e76604e10118aa3cc0ec&mc=true&node=pt40.6.58&rgn=div5</u>.

Beginning July 1, 2007, and each year thereafter, AMS has submitted to EPA Region III, an Air Monitoring Network Plan (AMNP) which assures that the network stations continue to meet the criteria established by federal regulations.

Air monitoring provides critical information on the quality of air in Philadelphia. The objective for much of our network is to measure pollutants in areas that represent high levels of contaminants and high population exposure. Some monitoring is also done to determine the difference in pollutant levels in various parts of the City, provide long term trends, help bring facilities into compliance, provide real-time monitoring and provide the public with information on air quality.

Air monitoring data is submitted to the EPA on a quarterly basis. EPA's AirData website (<u>https://www.epa.gov/outdoor-air-quality-data</u>) provides access to air quality data collected at the monitors. On May 1st of the current year, AMS certifies the prior year's data. The annual data certification process is outlined in 40 CFR Part 58.15.

The proper siting of a monitor requires the specification of the monitoring objective, the types of sites necessary to meet the objective, and the desired spatial scale of representativeness. These are discussed in the section entitled "Definitions".

This Plan is composed of fourteen sections plus Appendix A and B:

- **1. Public Participation** This section provides information on how the public is made aware of the AMNP and where it is available for review.
- 2. **Definitions** This section describes the terms used for air monitoring programs, measurement methods, monitoring objectives, spatial scales, air monitoring areas, pollutants, collection methods, and analysis methods.

- **3.** Current Network at a Glance This section shows the location of the monitoring sites and the pollutants measured at each site.
- **4.** Current Sites Summary This section provides information applicable to our overall network such as population. It also provides a brief overall purpose for each monitoring site.
- 5. Direction of Future Air Monitoring This section gives a perspective of the major areas and initiatives AMS will be considering during the next few years.
- 6. **Proposed Changes to the Network** This section describes changes that may occur within the next 18 months that would modify the network from how it is currently described in the AMNP.
- 7. NCore Monitoring Network This section documents the NCore monitoring network codified in 40 CFR Part 58.10(a)(3) and 40 CFR Part 58 Appendix D section 3.
- 8. Pb Monitoring Network This section documents the Pb monitoring network codified in 40 CFR Part 58.10(a)(4) and 40 CFR Part 58 Appendix D section 4.5.
- **9.** NO₂ Monitoring Network This section documents the NO₂ monitoring network codified in 40 CFR Part 58.10(a)(5) and 40 CFR Part 58 Appendix D section 4.3.
- **10.** SO₂ Monitoring Network This section documents the SO₂ monitoring network codified in 40 CFR Part 58.10(a)(6) and 40 CFR Part 58 Appendix D section 4.4.
- **11. CO Monitoring Network** This section documents the CO monitoring network codified in 40 CFR Part 58.10(a)(7) and 40 CFR Part 58 Appendix D section 4.2.
- **12. PM_{2.5} Monitoring Network** This section documents the PM_{2.5} monitoring network codified in 40 CFR Part 58.10(a)(8) and 40 CFR Part 58 Appendix D section 4.7.
- **13.** O₃ Monitoring Network This section documents the O₃ monitoring network codified in 40 CFR Part 58.10(a)(9) (12) and 40 CFR part 58 Appendix D section 4.1.
- **14. Detailed Information on Each Site** This is the largest section of the AMNP. Each monitoring site is separately described in a table, complete with pictures and maps. The material is presented as:
 - A table providing information on the pollutants measured, sampling type, operating schedule, collection method, analysis method, spatial scale, monitoring objective, probe height, and begin date of each monitor;
 - Pictures taken at ground level of the monitoring station;
 - A map of the monitoring site complete with major cross streets and major air emission sources within 3000 meters (almost 2 miles); and
 - An aerial picture providing a north view of the site.

15. Appendix A – PAMS Monitoring Implementation Plan

16. Appendix B – Philadelphia Air Quality Survey & Quality Assurance Project Plan

AMS has provided a copy of the AMNP for public inspection on the City's website at: https://www.phila.gov/departments/air-pollution-control-board/air-management-notices/.

Comments or questions concerning the air monitoring network or this Plan can be directed to:

Mr. Jason Li Engineering Supervisor of Program Services Air Management Services 321 University Avenue, 2nd Floor Philadelphia, PA 19104 Phone: 215-685-9440 E-mail: jiazheng.li@phila.gov

Table of Contents

1.	Executive Summary	i
2.	Public Participation	1
3.	Definitions	2
	Air Monitoring Programs	2
	Measurement Methods	2
	Monitoring Objectives	3
	Spatial Scales	3
	Air Monitoring Area	4
	Pollutants and Parameters	4
	Collection Methods	5
	Analysis Methods	6
4.	Current Network at a Glance	8
5.	Summary of Current Sites	10
6.	Direction of Future Air Monitoring	12
7.	Proposed Changes to the Network	13
8.	NCore Monitoring	14
9.	Pb Monitoring Network	15
10.	NO ₂ Monitoring Network	16
11.	SO ₂ Monitoring Network	17
12.	CO Monitoring Network	18
13.	PM _{2.5} Monitoring Network	19
14.	O ₃ Monitoring Network	20
15.	Detailed Information on Each Site	21
	LAB	22
	ROX	25
	NEA	28
	NEW	31
	RIT	36
	FAB	39
	SWA	42
	TOR	45
	MON	48
	VGR	52

Tables

Table 1 – Site Summary Table	11
Table 2 – Detailed LAB Information with Monitoring Station Picture	22
Table 3 – Detailed ROX Information with Monitoring Station Picture	25
Table 4 – Detailed NEA Information with Monitoring Station Picture	28
Table 5 – Detailed NEW Information with Monitoring Station Picture	31
Table 6 – Detailed RIT Information with Monitoring Station Picture	36
Table 7 – Detailed FAB Information with Monitoring Station Picture	39
Table 8 – Detailed SWA Information with Monitoring Station Picture	42
Table 9 – Detailed TOR Information with Monitoring Station Picture	45
Table 10 – Detailed MON Information with Monitoring Station Picture	48
Table 11 – Detailed VGR Information with Monitoring Station Picture	52

Figures	
riguites	
Figure 1 – 2020 Philadelphia Air Monitoring Network as of July 1, 2020	9
Figure 2 – LAB Monitoring Site Map with Major Streets and Major Emission Sources	23
Figure 3 – LAB North Aerial View	24
Figure 4 – ROX Monitoring Site Map with Major Streets and Major Emission Sources	26
Figure 5 – ROX North Aerial View	27
Figure 6 – NEA Monitoring Site Map with Major Streets and Major Emission Sources	29
Figure 7 – NEA North Aerial View	30
Figure 8 – NEW Monitoring Site Map with Major Streets and Major Emission Sources	34
Figure 9 – NEW North Aerial View	35
Figure 10 – RIT Monitoring Site Map with Major Streets and Major Emission Sources	37
Figure 11 – RIT North Aerial View	38
Figure 12 – FAB Monitoring Site Map with Major Streets and Major Emission Sources	40
Figure 13 – FAB North Aerial View	41
Figure 14 – SWA Monitoring Site Map with Major Streets and Major Emission Sources	43
Figure 15 – SWA North Aerial View	44
Figure 16 – TOR Monitoring Site Map with Major Streets and Major Emission Sources	46
Figure 17 – TOR North Aerial View	47
Figure 18 – MON Monitoring Site Map with Major Streets and Major Emission Sources	50
Figure 19 – MON North Aerial View	51
Figure 20 – VGR Monitoring Site Map with Major Streets and Major Emission Sources	53
Figure 21 – VGR North Aerial View	54

Appendices

Appendix A – PAMS Monitoring Implementation Network Plan	55
Appendix B – Philadelphia Air Quality Survey & Quality Assurance Project Plan	60

>

Public Participation

The Code of Federal Regulations (CFR) Title 40: Protection of Environment, Part 58: Ambient Air Quality Surveillance requires state and local air pollution control agencies to adopt and submit to the Environmental Protection Agency (EPA) Regional Administrator an Annual Monitoring Network Plan (AMNP) by July 1, 2020. The AMNP provides for the establishment and maintenance of an air quality surveillance system that consists of a network of monitoring stations. A proposed AMNP must be made available for public inspection and comment for at least 30 days prior to submission to EPA.

Air Management Services (AMS) is the local air pollution control agency for the City of Philadelphia under the Department of Public Health. Philadelphia has an air monitoring network of 10 air monitoring stations that house instruments that measure ambient levels of air pollutants.

The proposed AMNP is available for public inspection on the City's website at <u>https://www.phila.gov/departments/air-pollution-control-board/air-management-notices/</u> and at the office of Air Management Services, 321 University Avenue, 2nd Floor, Philadelphia, PA 19104, during normal business hours. For further information, contact Mr. Jason Li, Engineering Supervisor of Program Services at (215) 685-9440.

Written comments on the proposed AMNP should be sent to Mr. Jason Li, Engineering Supervisor of Program Services, Air Management Services, 321 University Avenue, 2nd Floor, Philadelphia, PA 19104 or via email at <u>jiazheng.li@phila.gov</u>. Use "2020 Air Monitoring Network Plan" as the subject line in written communication. Only written comments will be accepted. Comments received by facsimile will not be accepted. Persons wishing to file comments on the proposed AMNP must submit comments by June 9, 2020.

Definitions

Air Monitoring Programs

EPA has established various air monitoring programs for the measurement of pollutants. Some of these are briefly described below. Later in this AMNP, air monitoring sites and monitoring equipment are specifically identified relative to these air monitoring programs:

- **CSN** Chemical Speciation Network. It is a PM2.5 sampling network with sites located principally in urban areas.
- **NATTS** National Air Toxics Trends Stations. This network provides ambient levels of hazardous air pollutants. These sites are established with the intent that they will operate over many years and provide both current and historical information.
- NCore National Core multi-pollutant monitoring stations. Monitors at these sites are required to measure particles (PM_{2.5}, speciated PM_{2.5}, PM_{10-2.5}), O₃, SO₂, CO, nitrogen oxides (NO/NO₂/NO_y), and basic meteorology. They principally support research in air pollution control.
- SLAMS State or Local Air Monitoring Stations. The SLAMS make up the ambient air quality monitoring sites that are primarily needed for NAAQS comparisons, but may serve other data purposes. SLAMS exclude special purpose monitor (SPM) stations and include NCore, PAMS, Near-road NO₂/CO and all other State or locally operated stations that have not been designated as SPM stations.
- **PAMS** Photochemical Assessment Monitoring Station for the enhanced monitoring of ozone, oxides of nitrogen (NOx), and volatile organic compounds (VOC) to obtain more comprehensive and representative data on ozone air pollution..
- SPM Special Purpose Monitor. As the name implies these monitors are placed for purposes of interest to the city of Philadelphia. Often this monitoring is performed over a limited amount of time. Data is reported to the federal Air Quality System (AQS) and is not counted when showing compliance with the minimum requirements of the air monitoring regulations for the number and siting of monitors of various types.
- Urban Air Toxics Urban Air Toxics (UAT) monitoring addresses toxic air pollutant emissions in urban areas. UAT air monitoring is regularly conducted for volatile organic compounds (VOCs).

Measurement Methods

- Federal Equivalent Method (FEM) A method for measuring the concentration of an air pollutant in the ambient air that has been designated as an equivalent method in accordance with 40 CFR Part 53; it does not include a method for which an equivalent method designation has been canceled in accordance with 40 CFR Part 53.11 or 40 CFR Part 53.16.
- Federal Reference Method (FRM) A method of sampling and analyzing the ambient air for an air pollutant that is specified as a reference method in an appendix to 40 CFR Part 50, or a method that has been designated as a reference method in accordance with this part; it does not include a method for which a reference method designation has been canceled in accordance with 40 CFR Part 53.11 or 40 CFR Part 53.16.

Monitoring Objectives

The ambient air monitoring networks must be designed to meet three basic monitoring objectives:

- Provide air pollution data to the general public in a timely manner.
- Support compliance with ambient air quality standards and emissions strategy development.
- Assist in the evaluation of regional air quality models used in developing emission strategies, and to track trends in air pollution abatement control measures' impact on improving air quality.

In order to support the air quality management work indicated in the three basic air monitoring objectives, a network must be designed with a variety of different monitoring sites. Monitoring sites must be capable of informing managers about many things including the peak air pollution levels, typical levels in populated areas, air pollution transported into and outside of a city or region, and air pollution levels near specific sources.

Spatial Scales

The physical siting of the air monitoring station must be consistent with the objectives, site type and the physical location of a particular monitor.

The goal in locating monitors is to correctly match the spatial scale represented by the sample of monitored air with the spatial scale most appropriate for the monitoring site type, air pollutant to be measured, and the monitoring objective.

The spatial scale results from the physical location of the site with respect to the pollutant sources and categories. It estimates the size of the area surrounding the monitoring site that experiences uniform pollutant concentrations. The categories of spatial scale are:

- **Microscale** Defines concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- **Middle scale** Defines concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.
- **Neighborhood scale** Defines concentrations within some extended area of the city that has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range. The neighborhood and urban scales listed below have the potential to overlap in applications that concern secondarily formed or homogeneously distributed air pollutants.
- **Urban scale** Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in there being no single site that can be said to represent air quality on an urban scale.
- **Regional scale** Defines usually a rural area of reasonably homogeneous geography without large sources, and extends from tens to hundreds of kilometers.
- **National and global scales** These measurement scales represent concentrations characterizing the nation and the globe as a whole.

Air Monitoring Area

- **Core-Based Statistical Area (CBSA)** Defined by the U.S. Office of Management and Budget, as a statistical geographic entity consisting of the county or counties associated with at least one urbanized area/urban cluster of at least a population of 10,000 people, plus adjacent counties having a high degree of social and economic integration.
- Metropolitan Statistical Area (MSA) A Core-Based Statistical Area (CBSA) associated with at least one urbanized area of a population of 50,000 people or more. The central county plus adjacent counties with a high degree of integration comprise the area.

Pollutants and Parameters

Air Management Services monitors for a wide range of air pollutants and parameters:

- **Criteria Pollutants** are measured to assess if and how well we are meeting the National Ambient Air Quality Standards (NAAQS) that have been set for each of these pollutants. These standards are set to protect the public's health and welfare.
 - Ozone (O₃)
 - Sulfur Dioxide (SO₂)
 - Carbon Monoxide (CO)
 - Nitrogen Dioxide (NO₂)
 - NO means nitrogen oxide.
 - NO_X means oxides of nitrogen and is defined as the sum of the concentrations of NO₂ and NO.
 - NO_y means the sum of all total *reactive* nitrogen oxides, including NO, NO₂, and other nitrogen oxides referred to as NO_z.
 - Particulate
 - PM_{2.5} means particulate matter with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers.
 - PM₁₀ means particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers.
 - PM Coarse means particulate matter with an aerodynamic diameter greater than 2.5 micrometers and less than 10 micrometers.
 - Ultrafine Particulate Matter means particulate matter with an aerodynamic diameter less than 0.1 micrometers.
 - Lead (Pb)
- **BaP** means Benzo(a)Pyrene, a polycyclic aromatic hydrocarbon that is a product of incomplete combustion or burning organic (carbon-containing) items.
- Black Carbon Black Carbon is a major component of "soot", a complex and most strongly absorbing component of particulate matter (PM), that is formed by the incomplete combustion of fossil fuels, biofuels, and biomass.
- **MET** Meteorology parameters that may include temperature, relative humidity, barometric pressure, wind speed, wind direction, mixing height, precipitation, solar and UV radiation.
- Speciated PM_{2.5} PM_{2.5} particles are analyzed to identify their makeup (60 components including elements, radicals, elemental carbon, and organic carbon) and help assess the level of health risk and identify sources that are contributing to the levels of PM_{2.5} being measured.

- Toxics Approximately 44 compounds, carbonyls 7 compounds, and metals 7 elements are toxic and are measured to assess the risk of cancer and non cancer caused by these pollutants. The VOC compounds are analyzed by GC/MS (EPA Compendium Method TO-15); carbonyls are analyzed by HPLC, and metals by ICP-MS(WV).
- PAMS Volatile Organic Compounds (VOC) Approximately 57 of these compounds are monitored to assist in understanding the formation of ozone and how to control this pollutant. These compounds are analyzed by GC-FID.

Collection Methods

Particulate samples

- BAM-Beta Attenuation Monitor This instrument provides concentration values of particulate each hour. The BAM uses the principle of beta ray attenuation to provide a simple determination of mass concentration. Beta ray attenuation: A small ¹⁴C element emits a constant source of high-energy electrons, also known as beta particles. These beta particles are efficiently detected by an ultra-sensitive scintillation counter placed nearby. An external pump pulls a measured amount of air through a filter tape. Filter tape, impregnated with ambient dust is placed between the source and the detector thereby causing the attenuation of the measured beta-particle signal. The degree of attenuation of the beta-particle signal may be used to determine the mass concentration of particulate matter on the filter tape and hence the volumetric concentration of particulate matter in ambient air.
- Broadband Spectroscopy PM Mass Monitor This instrument provides continuous PM2.5 real-time mass measurements using broadband spectroscopy which combines advanced LED technology with light scattering theory. Certain PM Mass Monitor Models provide simultaneous, continuous PM10 and PM2.5, real-time PM mass measurements.

The following instruments provide concentration values of particulate over a 24-hour period. Laboratory analysis is required before the concentration of particulate can be determined.

- **Hi-Vol** High-Volume Air Samplers (HVAS) are used to determine the concentration of particulate matter in the air. All collected material is defined as total suspended (in the air) particulates (TSP), including lead (Pb) and other metals. A Hi-Volume sampler consists of two basic components: a motor similar to those used in vacuum cleaners and an air flow control system.
- **Met One SASS** Filters used to collect PM measurement of total mass by gravimetry, elements by x-ray fluorescence.
- \circ Filter-based PM_{2.5} Filter-based PM_{2.5} monitors an air sample drawn through a Teflon filter for 24 hours.
- URG Filters used to collect PM measurement of organic and elemental carbon.

Gaseous / criteria pollutants

- Instrumental Data from these instruments is telemetered to a central computer system and values are available in near "real time". An analyzer used to measure pollutants such as: carbon monoxide, sulfur dioxide, nitrogen oxides and ozone.
- Toxic and organic (VOC) pollutants
 - **SS Canister Pressurized** Ambient air is collected in stainless-steel canisters, cryogenically concentrated using liquid nitrogen and analyzed for target VOCs and other organic components by GC-FID and GC-MS.

- **Canister Sub Ambient Pressure** Collection of ambient air into an evacuated canister with a final canister pressure below atmospheric pressure.
- **DNPH-Coated Cartridges** Cartridges are coated with 2,4-dinitrophenylhydrazine (DNPH). This is used for carbonyl determination in ambient air. High Performance Liquid Chromatography (HPLC) measures the carbonyl.

Analysis Methods

Particulate concentration

- **Gravimetric** The determination of the quantities of the constituents of a compound, describes a set of methods for the quantitative determination of an analyte based on the weight of a solid. Laboratory analysis is needed.
- **Beta Attenuation** The principle of beta ray attenuation to provide a simple determination of mass concentration. Instrumental data is available in near real time.
- Broadband Spectroscopy Broadband spectroscopy combines advanced LED technology with light scattering theory. Certain PM Mass Monitor Models provide simultaneous, continuous PM10 and PM2.5, real-time PM mass measurements.

Composition/make-up of particulates

- **Energy Dispersive XRF** Energy dispersive x-Ray Fluorescence Spectrometer for the determination of species in ambient particulate matter.
- **Ion Chromatography** Ion-exchange chromatography (or ion chromatography) is a chromatography process that separates ions and polar molecules based on their affinity to the ion exchanger for the determination of species in ambient particulate matter.
- **IMPROVE** Thermal Optical Reflectance (TOR) analysis using the Interagency Monitoring of Protected Visual Environments (IMPROVE)_A protocol.
- **Inductively Coupled Plasma/Mass Spectrometry (ICP/MS)** Inductively Coupled Plasma/Mass Spectrometry for the determination of metals including Lead concentration in ambient particulate matter.

Gaseous / criteria pollutants

- Nitrogen Oxides Chemiluminescence Emission of light as a result of a chemical reaction at environmental temperatures. This analysis is used for NO, NO_x, and NO_y. NO₂ is calculated as NO_x- NO. True NO2 monitoring technology provides a direct NO2 measurement. The instrument utilizes a Cavity Attenuated Phase Shift (CAPS) technique.
- Carbon Monoxide Gas Filter Correlation Measures low ranges of carbon monoxide by comparing infrared energy absorbed by a sample to that absorbed by a reference gas according to the Beer-Lambert law. Using a Gas Filter Correlation Wheel, a high energy IR light source is alternately passed through a CO filled chamber and a chamber with no CO present. The light path then travels through the sample cell, which has a folded path of 14 meters. The energy loss through the sample cell is compared with the span reference signal provided by the filter wheel to produce a signal proportional to concentration.
- **Sulfur Dioxide UV Fluorescent** UV Fluorescence Sulfur Dioxide Analyzer is a microprocessor controlled analyzer that determines the concentration of sulfur dioxide (SO2), in a sample gas drawn through the instrument's sample chamber where it is exposed to ultraviolet light, which causes any SO2 present to fluoresce. The instrument measures the amount of fluorescence to determine the amount of SO2 present in the sample gas.

• **Ozone** – **Ultra Violet** - A light, which supplies energy to a molecule being analyzed. Ozone is analyzed with UV.

Toxic and volatile organic pollutants

- Cryogenic Preconcentration GC/FID Cryogenic Preconcentration Gas Chromatograph/Flame Ionization Detector - air injection volume for capillary GC combined with low concentrations of analyte require that samples be preconcentrated prior to GC analysis. Sample preconcentration is accomplished by passing a known volume of the air sample through a trap filled with fine glass beads that is cooled to -180°C. With this technique, the volatile hydrocarbons of interest are quantitatively retained in the trap, whereas the bulk constituents of air (nitrogen, oxygen, etc.) are not. The air sample is collected in a vessel of known volume. A portion of this volume is analyzed and used to calculate concentration of each compound in the original air sample after Gas Chromatographic (Flame Ionization Detector, GC-FID) analysis. The sample trapped cryogenically on the glass beads is thermally desorbed into a stream of ultra-pure helium and re-trapped on the surface of a fine stainless steel capillary cooled to -180°C. This second cryogenic trapping stage "focuses" the sample into a small linear section of tubing. The cold stainless steel capillary is ballistically heated (by electrical resistance) and the focused sample quickly desorbs into the helium stream and is transferred to the chromatographic column. Cryogen (liquid nitrogen, LN₂) is used to obtain sub ambient temperatures in the VOC concentration and GC. This analysis is used to determine the concentration of Benzene and other organic compounds and VOC in the atmosphere.
- **GC/MS** Gas Chromatograph/Mass Spectrometer. Analysis of organic or VOC are conducted using a gas chromatograph (GC) with a mass spectrometer (MS) attached as the detector. Cryogenic preconcentration with liquid nitrogen (LN₂) is also used to trap and concentrate sample components.
- **High Pressure Liquid Chromatography (HPLC)** The analytical method used to analyze carbonyl compounds such as acetaldehyde and formaldehyde. Carbonyl compounds are collected on the sampling media as their 2,4-dinitrohydrazine derivatives. The derivatives are separated by liquid chromatography (LC) on a packed column by means of a solvent mixture under high pressure (HPLC) followed by UV detection of each carbonyl derivative.

Current Network at a Glance

The City of Philadelphia is served by a network of ten air monitoring sites located throughout the City that measure the criteria pollutants (except lead¹): ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and particulate matter (PM₁₀ and PM_{2.5}). Four of the sites also measure toxics, such as benzene, acetaldehyde, and formaldehyde. The map below shows the location of air monitors and the pollutants measured at each monitor location.

¹ EPA waved monitoring lead since 2017 because the 2014-2016 design value was 0.04 ug/m³.

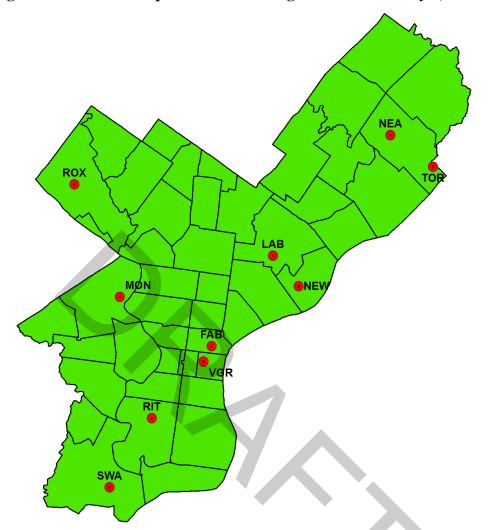


Figure 1 - 2020 Philadelphia Air Monitoring Network as of July 1, 2020

				Parameter															
AQS Site Code	AM S Site	Address	co	so ₂	Ozone	NQ	NOy/NO	PM 10	PM _{2.5}	Speciated PM _{2.5}	PM Coarse	Black Carbon / Ultrafine PM	Carbonyls	PAMS VOC	BaP	TSP Metals (Be, Cr, Mn, Ni, As, Cd, Pb)	Toxics TO15	MET	AM S Site
421010004	LAB	1501 E Lycoming St			Х														LAB
421010014	ROX	Eva & Dearnley Sts											Х				Х		ROX
421010024	NEA	Grant Ave & Ashton Rd			Х														NEA
421010048	NEW	2861 Lew is St	Х	X	Х	Х	Х	Х	Х	Х	X		Х	Х			Х	Х	NEW
421010055	RIT	24th & Ritner Sts		Х					Х	Х			Х			Х	Х		RIT
421010057	FAB	3rd & Spring Garden Sts							Х										FAB
421010063	SWA	8200 Enterprise Ave											Х				Х		SWA
421010075	TOR	4901 Grant Ave & James St	Х			Х			Х									Х	TOR
421010076	MON	I-76 & Montgomery Drive	Х			Х			Х			Х			Х	Х		Х	MON
	VGR	6th & Arch Sts			Х				Х									х	VGR

Summary of Current Sites

All of our ten monitoring sites are located in Philadelphia, PA:

State: Pennsylvania City: Philadelphia County: Philadelphia Metropolitan Statistical Area (MSA): Philadelphia – Camden - Wilmington, PA-NJ-DE-MD MSA number: 37980 Population: 6,102,434 (2019 annual estimate)² EPA Region: III, Philadelphia Class I area: Brigantine Natural Wildlife Preserve near Atlantic City, NJ City population: 1,584,064 (2019 annual estimate)³ Time zone: EST UTM zone: 18

`>

² MSA population estimates from:

https://www.census.gov/data/tables/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html ³ Philadelphia County population estimates from:

https://www.census.gov/data/tables/time-series/demo/popest/2010s-counties-total.html

Table 1 – Site Summary Table

AQS Site Code	AMS Site	Address	Statement of Purpose
421010004	LAB	1501 E. Lycoming St.	Built in 1964, is a good site to test new or complex monitoring methods as laboratory staff are readily available.
421010014	ROX	Eva & Dearnley Sts.	Periphery site.
421010024	NEA	Grant Ave & Ashton Rd.	Periphery site. High Ozone.
421010048	NEW	2861 Lewis St.	Originally sited to measure the impact of Franklin Smelting and Refining (now closed), MDC (now closed), and the waste water treatment plant. In 2013, the NCore site was re-located here and in 2017 is a designated PAMS site.
421010055	RIT	24 th & Ritner Sts.	This site was selected to help assess the impact of the petroleum refinery on the local community. The area was identified by air quality modeling.
421010057	FAB	3 rd & Spring Garden Sts.	This site was established to represent the highest levels of $PM_{2.5}$ in the City based on EPA Region III's air quality modeling of air toxics in Philadelphia. It shows high levels of $PM_{2.5}$ created by vehicle traffic.
421010063	SWA	8200 Enterprise Ave.	This site was established to measure toxics, carbonyls, and metals. EPA Region III modeling analysis showed areas near the airport to have high levels of aldehydes.
421010075	TOR	4901 Grant Ave & James St.	This site was established as the 1 st near-road NO ₂ monitor in the Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metropolitan Statistical Area.
421010076	MON	I-76 & Montgomery Drive	This site was established as the 2nd near-road NO ₂ monitor in the Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metropolitan Statistical Area.
	VGR	6 th & Arch Sts.	EPA's Village Green Air Monitoring Station. Utilizes solar and wind turbine power as energy sources. Sited to increase community awareness of environmental conditions.

Direction of Future Air Monitoring

The agency will study and assess the overall monitoring program within the City to determine the course of future changes to the air monitoring network.

The agency will focus on the following:

- The agency will re-evaluate the number and monitoring locations for toxics due to decreased EPA funding.
- The agency will consider the Philadelphia Air Quality Survey (PAQS) project monitoring data results to evaluate the air pollutants concentration throughout the city and based on PAQS result the agency will propose to EPA for the updating of FRM/FEM ambient air monitoring locations.
- Improve the understanding of particulate and air toxic pollutants in Philadelphia.
 - The agency plans to pursue negotiations with the port entities in order to implement monitoring and emission inventory efforts in this location.
- The agency would like to consider Environmental Justice during the development of the Air Monitoring Network Plan and look to investigate concentrations in these communities.

Proposed Changes to the Network

Below are changes that are anticipated to occur over the next 18 months to the existing air monitoring network:

- March 2020 December 2021
 - Philadelphia Air Quality Survey (see Appendix B).
 - AMS will continue to maintain sites and sample ambient air as shown in Appendix B. A project report will be produced once sampling and data validation are completed.
 - o PAMS

- The PAMS Monitoring Implementation Plan has been updated. See Appendix A for the update.
- AMS is exploring additional monitoring locations in environmental justice areas pending funding from EPA.

NCore Monitoring Network

The requirements for the NCore air monitoring network are codified in 40 CFR Part 58.10(a)(3) and 40 CFR Part 58 Appendix D section 3.

The NCore station is located at NEW.

The recently revised monitoring rule (80 FR 65292) requires PAMS measurements June 1 through August 31 at NCore sites that are located in Core-Based Statistical Areas (CBSAs) with populations of 1,000,000 or more as codified in 40 CFR Part 58 Appendix D section 5(a).

PAMS Monitoring Implementation Network Plan is included in Appendix A.

Pb Monitoring Network

The requirements for the Pb air monitoring network are codified in 40 CFR Part 58.10(a)(4) and 40 CFR Part 58 Appendix D section 4.5.

Philadelphia County has no source oriented Pb sources that emit 0.50 or more tons per year.

Y, *>

NO₂ Monitoring Network

The requirements for the NO₂ air monitoring network are codified in 40 CFR Part 58.10(a)(5) and 40 CFR Part 58 Appendix D section 4.3.

AMS currently operates an NO_2 monitor that meets the area-wide monitoring requirements. The first near-road NO_2 monitor was established at TOR and started operation on January 1, 2014. The second near-road NO_2 monitor is located at MON and started operation on July 20, 2015.

SO₂ Monitoring Network

The requirements for the SO_2 air monitoring network are codified in 40 CFR Part 58.10(a)(6) and 40 CFR Part 58 Appendix D section 4.4.

-Y,

CO Monitoring Network

The requirements for the CO air monitoring network are codified in 40 CFR Part 58.10(a)(7) and 40 CFR Part 58 Appendix D section 4.2.

The Philadelphia-Camden-Wilmington, PA-NJ-DE-MD CBSA has a CO monitor collocated with the near-road NO₂ monitor at TOR and has been operational since January 1, 2014.

Y,

PM_{2.5} Monitoring Network

The requirements for the $PM_{2.5}$ air monitoring network are codified in 40 CFR Part 58.10(a)(8) and 40 CFR Part 58 Appendix D section 4.7.

The requirement for at least one $PM_{2.5}$ monitor to be collocated at a near-road NO₂ station for CBSAs with a population of 1,000,000 or more persons is met at the TOR monitoring site.

Y, *>

O₃ Monitoring Network

The requirements for the O_3 air monitoring network are codified in 40 CFR Part 58.10(a)(9) – (12) and 40 CFR Part 58 Appendix D section 4.1.

AMS currently operates three O₃ monitors.

Enhanced Monitoring Plan

40 CFR Part 58 Appendix D. 5(h) requires: "States with Moderate and above 8-hour O3 nonattainment areas and states in the Ozone Transport Region as defined in 40 CFR 51.900 shall develop and implement an Enhanced Monitoring Plan (EMP) detailing enhanced O3 and O3 precursor monitoring activities to be performed. The EMP shall be submitted to the EPA Regional Administrator no later than October 1, 2019 or two years following the effective date of a designation to a classification of Moderate or above O3 nonattainment, whichever is later. At a minimum, the EMP shall be reassessed and approved as part of the 5-year network assessments required under 40 CFR 58.10(d). The EMP will include monitoring activities deemed important to understanding the O3 problems in the state. Such activities may include, but are not limited to, the following:

- (1) Additional O₃ monitors beyond the minimally required under paragraph 4.1 of this appendix,
- (2) Additional NO_x or NO_y monitors beyond those required under 4.3 of this appendix,
- (3) Additional speciated VOC measurements including data gathered during different periods other than required under paragraph 5(g) of this appendix, or locations other than those required under paragraph 5(a) of this appendix, and
- (4) Enhanced upper air measurements of meteorology or pollution concentrations."

Please note only States, not local counties, are required to submit an EMP to the EPA. AMS will work with PADEP for enhanced O₃ and O₃ precursor monitoring.

Currently, AMS monitors the following beyond the minimal requirements:

(1) Year round ozone monitoring at all sites.

Pending funding for EMPs, AMS cannot guarantee that year round monitoring will continue.

PAMS Monitoring Implementation Network Plan is included in Appendix A.

Detailed Information on Each Site

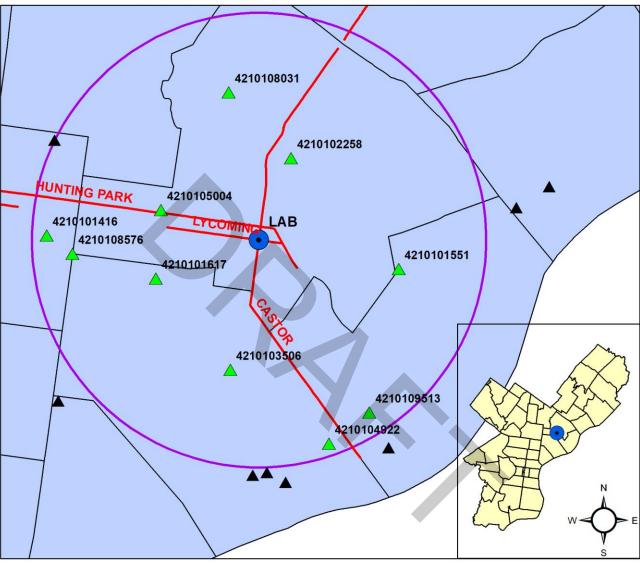
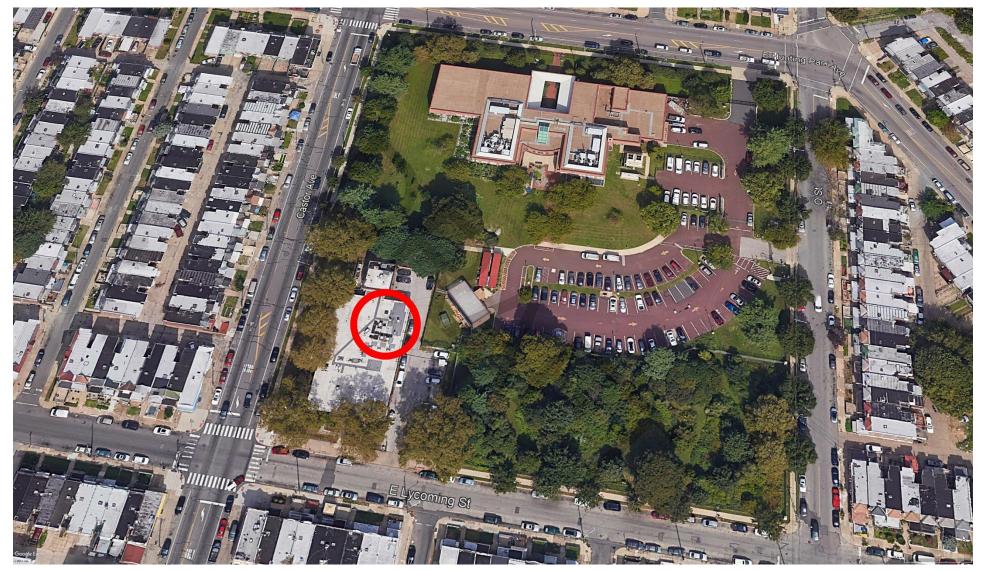

The tables that follow provide detailed information for each of the 10 monitoring stations in Philadelphia County. As per 40 CFR Part 58.10(a)(1), the siting and operation of each monitor in the 2020-2021 AMNP meets the requirements of 40 CFR Part 58 and Appendices A, B, C, D, and E of this part where applicable.

Table 2 – Detailed LAB Information with Monitoring Station Picture

AMS SITE ID: LAB AQS Site ID: 421010004		
Street Address: 1501 E. Lycoming Street, 19	124	A REAL PROPERTY AS A REAL PROPERTY AS
Geographical Coordinates		
Latitude: 40.008889		
Longitude: -75.09778		


Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
Ozone	SLAMS		Continuous	Instrumental	Ultraviolet Absorption	Year-round operation (O3 Season 2019: March - October)	44201	2	087	Neighborhood	Population Exposure	7	1/1/2018

AMS LABORATORY - 1501 E. LYCOMING ST. EPA AIRS CODE: 421010004

			2018 Emissions (tons)							
SiteID	Facility Name	Address	Pb	со	NOX	PM10	PM2.5	SO2	VOC	
4210104922	PHILA GAS WORKS/RICHMOND PLT	3100 E VENANGO ST	0.0000	2.611	5.953	0.272	0.237	0.027	0.214	
4210109513	NORTHEAST WPCP/PHILA	3899 RICHMOND ST	0.0000	3.232	4.093	3.294	3.294	0.429	5.769	
4210103506	PTR BALER AND COMPACTOR/PHILA	2207 E ONTARIO ST	0.0000	0.413	0.499	0.038	0.038	0.017	19.647	
4210101617	PUROLITE INC/MFG CHEM	3620 G ST	0.0000	2.301	2.739	0.208	0.208	0.016	2.019	
4210101551	ADVANSIX INC	4700 BERMUDA ST	0.0000	71.441	252.752	69.293	55.461	57.601	107.309	
4210108576	ST CHRISTOPHERS HOSP FOR CHILDREN/PHILA	ERIE AVE & FRONT ST	0.0000	3.102	4.500	0.336	0.336	0.092	0.276	
4210101416	TDPS MATERIALS INC/ASPHALT PLT	3870 N 2ND ST	0.0000	10.100	2.020	1.790	0.230	0.260	2.490	
4210105004	MIPC LLC/ PHILA	4210 G ST	0.0000	0.000	0.000	0.000	0.000	0.000	24.550	
4210102258	MUTUAL PHARMACEUTICAL INC/PHILA	1100 ORTHODOX ST	0.0000	1.160	1.401	0.107	0.036	0.010	1.737	
4210108031	FRIENDS HOSP/PHILA	4641 ROOSEVELT BLVD	0.0000	1.889	2.285	0.071	0.046	0.016	0.126	

Figure 3 – LAB North Aerial View

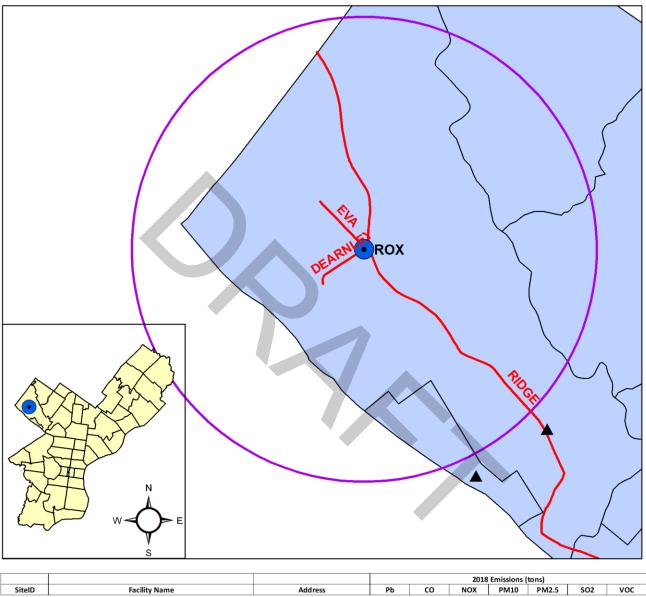


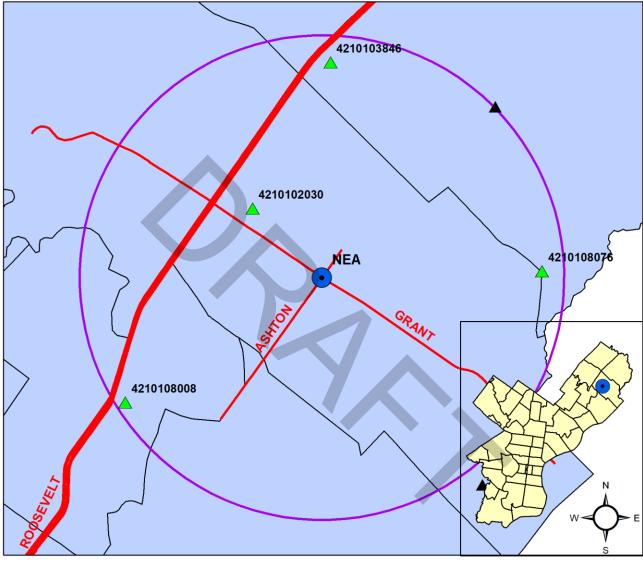
Table 3 – Detailed ROX Information with Monitoring Station Picture

AMS SITE ID: ROX	
AQS Site ID: 421010014	
Street Address: Eva & Dearnley Streets	
Geographical Coordinates	
Latitude: 40.049604	
Longitude: -75.241209	

Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
Carbonyls	Other	Urban Air Toxics	1/6 days	DNPH-Coated Cartridges	HPLC		Vary	2	102	Neighborhood	Population Exposure	7	5/7/2003
Toxics	Other	Urban Air Toxics	1/6 days	Canister Subambient Pressure	Multi- Detector GC		Vary	4,5	150	Neighborhood	Population Exposure	7	1/1/2004

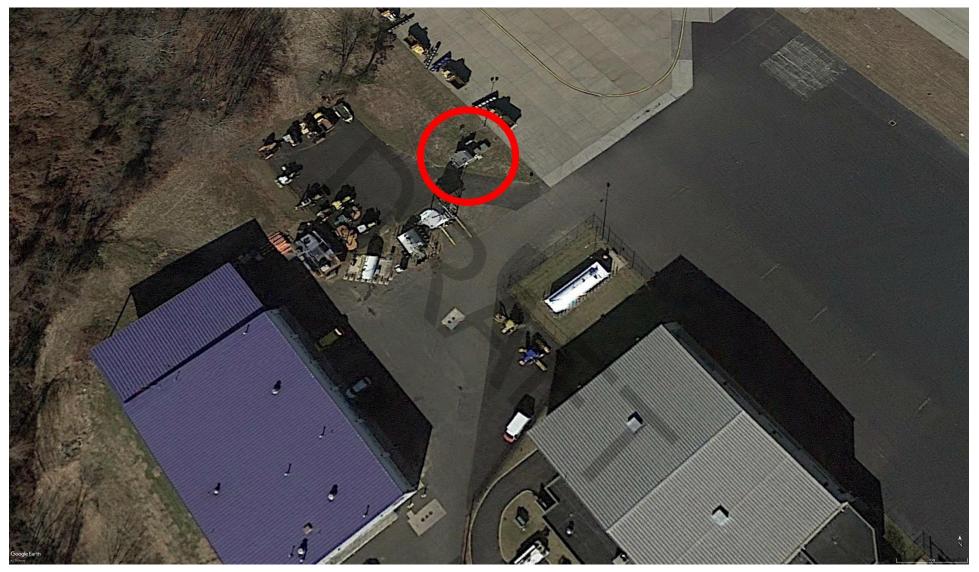
ROXBOROUGH - EVA & DEARNLEY STS. EPA AIRS CODE: 421010014

Figure 5 – ROX North Aerial View


Table 4 – Detailed NEA Information with Monitoring Station Picture

AMS SITE ID: NEA	
AQS Site ID: 421010024	
Street Address: Grant Ave & Ashton Rd	
Geographical Coordinates	
Latitude: 40.076389	
Longitude: -75.011944	

Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
Ozone	SLAMS		Continuous	Instrumental	Ultraviolet Absorption	Year-round operation (O3 Season 2016: April - October; O3 Season 2017: March - October)	44201	1	087	Neighborhood	Highest concentration	6	1/1/1974


5

NORTHEAST AIRPORT - GRANT AVE & ASHTON RD. EPA AIRS CODE: 421010024

				2018 Emissions (tons)							
SiteID	Facility Name	Address	Pb	со	NOX	PM10	PM2.5	SO2	VOC		
4210108008	NAZARETH HOSP/PHILA	2601 HOLME AVE	0.0000	1.664	2.382	0.092	0.069	0.042	0.129		
4210108076	ARIA HEALTH/TORRESDALE CAMP	RED LION & KNIGHTS RD	0.0000	7.713	10.943	0.563	0.563	0.135	0.844		
4210102030	RYDER TRUCK RENTAL INC/BLUEGRASS RD	9751 BLUE GRASS RD	0.0000	0.020	0.120	0.004	0.000	0.001	0.358		
4210103846	NATL PUB CO/ROOSEVELT BLVD	11311 ROOSEVELT BLVD	0.0000	0.573	0.682	0.052	0.052	0.003	3.178		

Figure 7 – NEA North Aerial View

Table 5 – Detailed NEW information with Monitoring Station Picture

AMS SITE ID: NEW
AQS Site ID: 421010048
Street Address: 2861 Lewis Street
Geographical Coordinates
Latitude: 39.991389
Longitude: -75.080833

Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
CO (trace)	SLAMS	NCORE	Continuous	Instrumental	Gas Filter Correlation CO Analyzer	High sensitivity	42101	1	093	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
SO2 (trace)	SLAMS	NCORE	Continuous	Instrumental	Ultraviolet Fluorescence	High sensitivity	42401	2	100	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
Ozone	SLAMS	NCORE	Continuous	Instrumental	Ultraviolet Absorption	Year-round operation (O3 Season 2016: April - October; O3 Season 2017: March - October)	44201	1	087	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
NO	SLAMS	NCORE	Continuous	Instrumental	Chemilumine scence Teledyne	High sensitivity external converter mounted at 10m	42601	1	099	Neighborhood	Population Exposure	10	1/1/2011, moved 10/2/13
NOy	SLAMS	NCORE	Continuous	Instrumental	Chemilumine scence Teledyne	High sensitivity external converter mounted at 10m	42600	1	699	Neighborhood	Population Exposure	10	1/1/2011, moved 10/2/13
PM10 Continuous	SLAMS	NCORE	Continuous	Teledyne API T640X at 16.67 LPM	Broadband Spectroscopy		81102	2	239	Neighborhood	Population Exposure	2	1/1/2019

PM2.5 Continuous	SLAMS	NCORE	Continuous	Instrumental	BAM =Beta Attenuation Monitor Met One BAM - 1020		88101	3	170	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
PM2.5 Continuous	SLAMS	NCORE	Continuous	Teledyne API T640X at 16.67 LPM	Broadband Spectroscopy	To replace existing PM2.5 BAM	88101	4	238	Neighborhood	Population Exposure	2	1/1/2020
PM2.5 Speciated	SLAMS	NCORE, CSN	1/3 days	Met One SASS (Nylon and Teflon) and URG	Energy Dispersive XRF, Ion Chromatogra phy and IMPROVE	Analysis by EPA	Vary	5	Vary	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
PM2.5 FRM	SLAMS	NCORE	1/3 days	R&P PM2.5	Gravimetric	NEW-D	88101	1	145	Neighborhood	Population Exposure	2	1/1/2011, moved 10/2/13
PM10-2.5 (PM Coarse)	SLAMS	NCORE	Continuous	Teledyne API T640X at 16.67 LPM	Broadband Spectroscopy	To replace existing PMcoarse (method code: 185)	86101	4	240	Neighborhood	Population Exposure	2	1/1/2019
Meteorological	SLAMS	NCORE	Continuous		Air quality measurement s approved instrumentati on for wind speed, wind direction, humidity, barometric pressure,rainf all and solar radiation		Vary	1	Vary	Neighborhood	Population Exposure	10	6/1/1993
Carbonyls	Other	Urban Air Toxics	1/6 days	DNPH-Coated Cartridges	HPLC	In addition to the 1-in-6 days UAT sampling, also sampling for three of 8- hour periods every 3rd day during PAMS season (June 1 - Aug 31)	Vary	1,3	102	Neighborhood	Population Exposure	7	10/14/20 16
Toxics	Other	Urban Air Toxics	1/6 days	Canister Subambient Pressure	Multi- Detector GC		Vary	1,2	150	Neighborhood	Population Exposure	7	10/14/20 16
PAMS VOC	SLAMS	PAMS	1/6 days (March-Oct) - 24-Hr Collocated	SS Canister Pressurized.	Cryogenic Preconcentra tion GC/FID.		Vary	1,2	101	Neighborhood	Population Exposure	7	4/1/2017
PAMS VOC	SLAMS	PAMS	Continuous	CAS Auto GC		To run year around	Vary			Neighborhood	Population Exposure		
Ceilometer	SLAMS	PAMS	Continuous	Vaisala									1/1/2018
Solar radiation	SLAMS	PAMS	Continuous	MetOne									

UV radiation	SLAMS	PAMS	Continuous	Eppley							
Precipitation	SLAMS	PAMS	Continuous	MetOne							
True NO2	SLAMS	PAMS	Continuous	Teledyne Model T500U	Cavity Attenuated Phase Shift Spectroscopy	42602	1	212	Neighborhood	Population Exposure	4/1/2019

				2018 Emissions (tons)						
SiteID	Facility Name	Address	Pb	со	NOX	PM10	PM2.5	SO2	VOC	
4210105003	KINDER MORGAN LIQUIDS TERM/PHILA	3300 N DELAWARE AVE	0.0000	4.784	5.320	0.385	0.295	0.045	34.827	
4210101421	RIVERSIDE MATERIALS INC/ASPHALT PLT	2870 E ALLEGHENY AVE	0.0000	25.450	5.280	2.500	0.950	0.650	9.200	
4210102255	SMITH EDWARDS DUNLAP CO/ALLEGHENY AVE	2867 E ALLEGHENY AVE	0.0000	0.112	0.136	0.010	0.010	0.044	2.733	
4210104903	EXELON GENERATING CO/RICHMOND	3901 N DELAWARE AVE	0.0011	0.274	54.991	1.567	0.322	1.025	0.034	
4210104922	PHILA GAS WORKS/RICHMOND PLT	3100 E VENANGO ST	0.0000	2.611	5.953	0.272	0.237	0.027	0.214	
4210109513	NORTHEAST WPCP/PHILA	3899 RICHMOND ST	0.0000	3.232	4.093	3.294	3.294	0.429	5.769	
4210103506	PTR BALER AND COMPACTOR/PHILA	2207 E ONTARIO ST	0.0000	0.413	0.499	0.038	0.038	0.017	19.647	
4210101551	ADVANSIX INC	4700 BERMUDA ST	0.0000	71.441	252.752	69.293	55.461	57.601	107.309	
4210102094	DIETZ & WATSON INC/PHILA	5701 TACONY ST	0.0000	5.627	3.498	0.525	0.506	0.165	0.378	

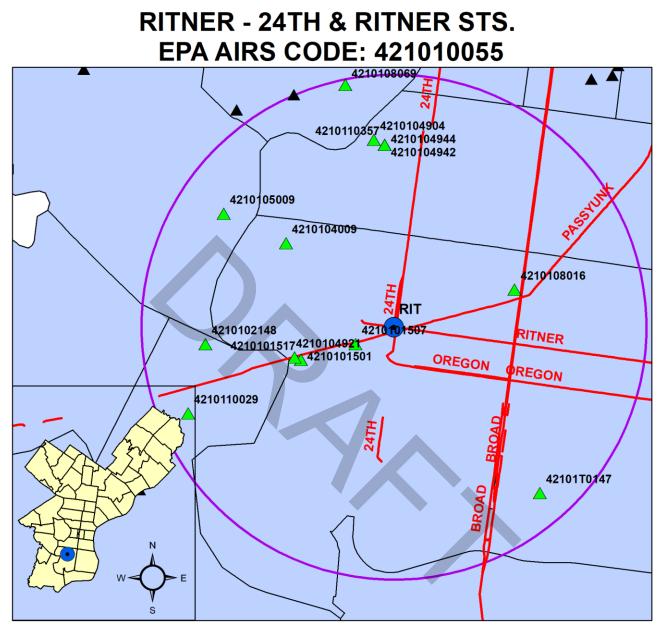
Figure 9 – NEW North Aerial View

Table 6 – Detailed RIT Information with Monitoring Station Picture

AMC	SITE	ID.	DIT
AIVIS	SILE	ID.	RII

AQS Site ID: 421010055

Street Address: 24th & Ritner Streets


Geographical Coordinates

Latitude: 39.922867

Longitude: -75.186921

Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
SO2	SLAMS		Continuous	Instrumental	Ultraviolet Fluorescence		42401	1	100	Neighborhood	Population Exposure	4	11/9/2004
PM2.5 Speciated	SLAMS	CSN	1/3 days	Met One SASS (Nylon and Teflon) and URG	Energy Dispersive XRF, Ion Chromatography and IMPROVE	Analysis by EPA	Vary	5	Vary	Neighborhood	Population Exposure	N/A	9/1/2005
Metals	Other		1/6 days	Hi-Vol	ICP-MS	Analysis by WV (TSP sampler with quartz)	Vary	1	089	Neighborhood	Population Exposure	7	8/31/2004
Carbonyls	Other	Urban Air Toxics	1/6 days	DNPH-Coated Cartridges	HPLC		Vary	2	102	Neighborhood	Population Exposure	7	Vary
Toxics	Other	Urban Air Toxics	1/6 days	Canister Subambient Pressure	Multi-Detector GC		Vary	4,5	150	Neighborhood	Population Exposure	7	11/1/2004
PM2.5 Continuous	SLAMS		Continuous	Teledyne T640 at 5.0 LPM	Broadband Spectroscopy		88101	4	236	Neighborhood	Population Exposure	4	4/1/2020

			2018 Emissions (tons)						
SiteID	Facility Name	Address	Pb	со	NOX	PM10	PM2.5	SO2	VOC
42101T0147	CITIZENS BANK PARK/PHILA	1001 PATTISON AVE	0.0000	2.580	2.880	0.210	0.210	0.021	0.200
4210110029	KINDER MORGAN POINT BREEZE TERM/ PHILA	6310 PASSYUNK AVE	0.0000	0.377	0.466	0.038	0.038	0.010	12.858
4210101501	PHILA ENERGY SOL REF/ PES	3144 W PASSYUNK AVE	0.0193	886.218	1192.090	168.854	168.854	176.855	666.861
4210101517	PES/SCHUYLKILL TANK FARM	3144 W PASSYUNK AVE	0.0000	4.384	1.182	0.043	0.043	0.037	103.969
4210104921	PHILA GAS WORKS/PASSYUNK PLT	3100 W PASSYUNK AVE	0.0000	2.328	3.741	0.297	0.255	0.077	0.327
4210101507	SUNOCO LOGISTICS/BELMONT TERM	2700 W PASSYUNK AVE	0.0000	20.486	8.229	0.128	0.126	0.082	27.390
4210102148	CLEAN EARTH OF PHILA LLC/PHILA	3201 S 61ST ST	0.0000	0.000	0.000	0.180	0.030	0.000	2.250
4210108016	CONSTITUTION HEALTH PLAZA / PHILA	1930 S BROAD ST	0.0000	0.773	1.142	0.046	0.037	0.024	0.062
4210104009	TRANSFLO TERMINAL SERVICES INC/PHIL	3600 MOORE ST	0.0000	0.025	0.098	0.381	0.008	0.001	0.052
4210105009	PBF LOGISTICS TERM 51ST/PHILA	1630 S 51ST ST	0.0000	0.000	0.000	0.000	0.000	0.000	1.335
4210104942	VEOLIA ENERGY/SCHUYLKILL STA	2600 CHRISTIAN ST	0.0006	4.220	76.800	1.520	1.520	16.630	0.530
4210104944	GRAYS FERRY COGEN PARTNERSHIP/PHILA	2600 CHRISTIAN ST	0.0010	19.160	227.600	15.280	15.280	3.800	0.620
4210110357	VEOLIA/VEOLIA ENERGY EFFICIENCY	2600 CHRISTIAN ST	0.0005	0.190	5.700	0.360	0.360	0.280	1.280
4210104904	EXELON GENERATION CO/SCHUYLKILL STA	2800 CHRISTIAN ST	0.0001	0.668	4.947	0.263	0.029	0.014	0.023
4210108069	CHILDRENS HOSP OF PHILA/ PHILA	34TH & CIVIC CENTER BLVD	0.0000	15.540	32.110	3.200	3.200	0.930	2.760

Figure 11 – RIT North Aerial View

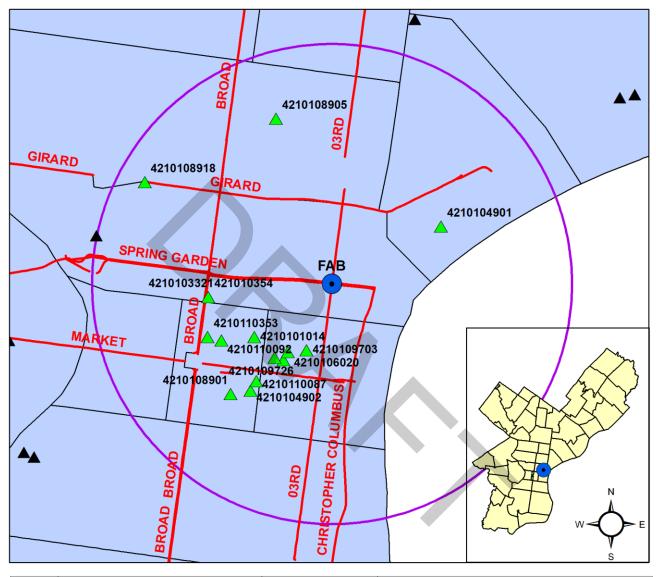


Table 7 – Detailed FAB Information with Monitoring Station Picture

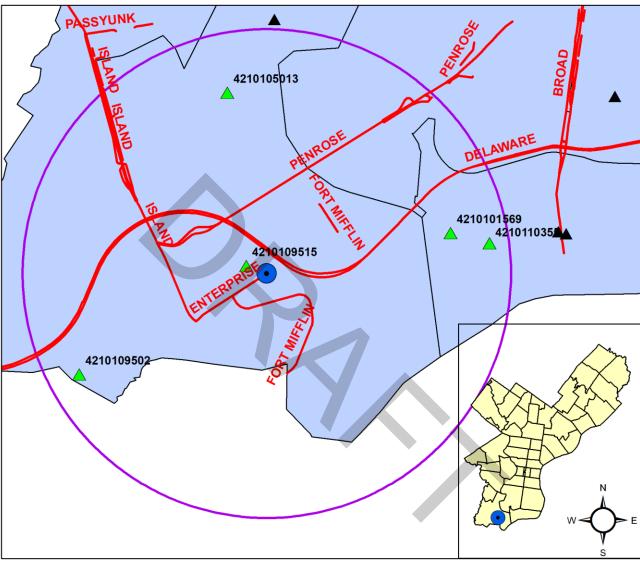
AMS SITE ID: FAB	
AQS Site ID: 421010057	
Street Address: 3rd and Spring Garden Sts.	
Geographical Coordinates	
Latitude: 39.960048	
Longitude: -75.142614	

Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
PM2.5 Continuous	SLAMS		Continuous	Teledyne T640 at 5.0 LPM	Broadband Spectroscopy		88101	4	236	Neighborhood	Highest Concentration	2	1/1/2020

FIRE ADMINSTRATION BUILDING - 3RD & SPRING GARDEN STS. EPA AIRS CODE: 421010057

			2018 Emissions (tons)						
SiteID	Facility Name	Address	Pb	со	NOX	PM10	PM2.5	SO2	VOC
4210108901	THOMAS JEFFERSON UNIV/PHILA	11 & WALNUT ST	0.0000	0.235	1.106	0.075	0.075	0.070	0.058
4210104902	VEOLIA ENERGY EDISON/PHILA	908 SANSOM ST	0.0000	3.494	33.417	5.241	3.045	53.991	0.197
4210110087	HCP INC/PHIL	833 CHESTNUT ST	0.0000	0.878	1.196	0.033	0.033	0.019	0.055
4210109723	WILLIAM J GREEN JR FED BLDG/GSA	600 ARCH ST	0.0000	2.440	3.160	0.220	0.220	0.040	0.170
4210109726	FEDERAL BUR OF PRISONS/ PHILA COURT	700 ARCH ST	0.0000	1.097	1.373	0.527	0.000	0.014	0.075
4210106020	FEDERAL RESERVE BANK/PHILA	100 N 6TH ST	0.0000	1.941	2.657	0.199	0.199	0.049	0.145
4210109703	US MINT/PHILA	151 N INDEPENDENCE MALL E	0.0000	4.063	2.740	0.086	0.000	0.022	1.095
4210110092	PA CONV CTR/ARCH ST	1101 ARCH ST	0.0000	2.102	2.823	0.103	0.103	0.043	0.154
4210101014	VERIZON MKT CTRL OFC/RACE ST	900 RACE ST	0.0000	0.205	1.760	0.158	0.026	0.147	0.119
4210110353	PA CONVENTION CTR ANNEX/BROAD ST	111 N BROAD ST	0.0000	0.588	0.803	0.029	0.000	0.013	0.044
4210103321	SUNGARD RECOVERY SVC INC/BROAD ST PHILA	401 N BROAD ST STE 600	0.0000	0.015	0.039	0.002	0.000	0.000	0.002
421010354	CROSS CONNECT/PHILADELPHIA	401 N BROAD ST	0.0000	0.107	0.525	0.023	0.000	0.000	0.029
4210104901	EXELON GENERATION CO/DELAWARE STA	1325 N BEACH ST	0.0000	0.705	4.610	0.354	0.031	0.130	0.024
4210108918	GIRARD COLL/BOARDING SCH	GIRARD & CORINTHIAN AVE	0.0000	2.416	2.882	0.219	0.219	0.017	0.158
4210108905	TEMPLE UNIV/ MAIN CAMPUS	1009 W MONTGOMERY AVE	0.0001	21.519	28.710	1.155	1.147	1.222	3.140

Figure 13 – FAB North Aerial View


Table 8 – Detailed SWA Information with Monitoring Station Picture

AMS SITE ID: SWA	in the second se	
AQS Site ID: 421010063		Bill
Street Address: 8200 Enterprise Avenue, 19153		
Geographical Coordinates	r r	
Latitude: 39.88294		
Longitude: -75.21965		
		YEA

Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
Carbonyls	Other	Urban Air Toxics	1/6 days	DNPH-Coated Cartridges	HPLC		Vary	2	102	Neighborhood	Source- Oriented	N/A	9/10/2009
Toxics	Other	Urban Air Toxics	1/6 days	Canister Subambient Pressure	Multi- Detector GC		Vary	3,5	150	Neighborhood	Source- Oriented	N/A	9/10/2009

-

PHILADELPHIA AIRPORT - 8200 ENTERPRISE AVE. EPA AIRS CODE: 421010063

			2018 Emissions (tons)						
SiteID	Facility Name	Address	Pb	со	NOX	PM10	PM2.5	SO2	VOC
4210109502	PHILA INTL AIRPORT/PHILA	INDUSTRIAL HWY	0.0000	8.051	18.328	1.702	1.702	0.129	1.165
4210109515	PHILA WATER DEPT/STP SW	8200 ENTERPRISE AVE	0.0000	10.446	4.520	1.119	1.119	0.906	3.102
4210110355	PHILA SHIP REPAIR/PHILA	5195 S 19TH ST	0.0000	1.313	5.985	1.079	0.000	0.003	6.686
4210101569	PHILLY SHIPYARD INC / PHILA	PHILA NAVAL BUS CTR	0.0000	0.115	0.069	23.823	14.983	0.001	60.166
4210105013	PBF LOGISTICS TERM 67TH ST/PHILA	6850 ESSINGTON AVE	0.0000	1.480	1.760	0.100	0.100	0.010	53.267

Figure 15 – SWA North Aerial View

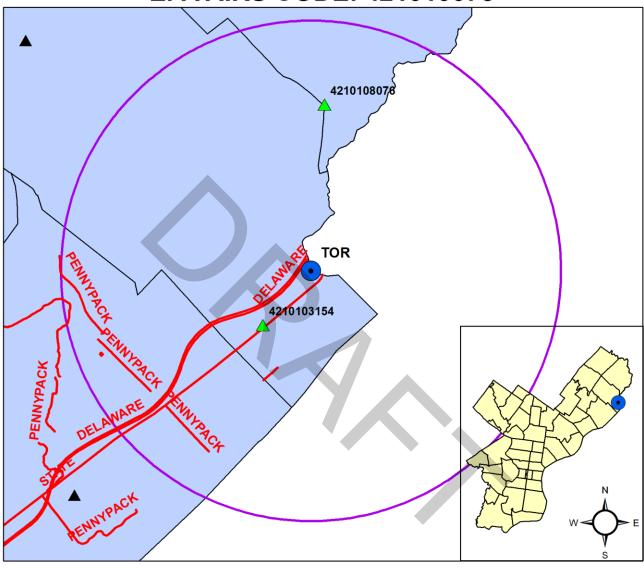
Table 9 – Detailed TOR Information with Station Monitoring Picture

AMS	SITE	ID:	TOR	

AQS Site ID: 421010075

Street Address: 4901 Grant Ave. & James St., 19114

Geographical Coordinates


Latitude: 40.054171

Longitude: -74.985166

Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
со	SLAMS	Near Road	Continuous	Instrumental	Gas Filter Correlation CO Analyzer		42101	1	093	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
NO2	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemilumin escence		42602	1	099	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
NO	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemilumin escence		42601	1	099	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
NOx	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemilumin escence		42603	1	099	Microscale	Highest Concentration, Source Oriented	5	1/1/2014
PM2.5 Continuous	SLAMS	Near Road	Continuous	Teledyne T640 at 5.0 LPM	Broadband Spectrosco py		88101	2	236	Microscale	Highest Concentration, Source Oriented	5	4/1/2020
Meteorological	SLAMS	Near Road	Continuous		Vaisala 435C RH/AT Sensor		Vary	1	Vary	Microscale	Highest Concentration, Source Oriented	5	1/1/2014

TORRESDALE - 4901 GRANT AVE. & JAMES ST. EPA AIRS CODE: 421010075

			2018 Emissions (tons)						
SiteID	Facility Name	Address	Pb	со	NOX	PM10	PM2.5	SO2	VOC
4210103154	JOWITT AND RODGERS CO/STATE RD FAC	9400 STATE RD	0.0000	0.036	0.182	0.020	0.014	0.009	8.884
4210108076	ARIA HEALTH/TORRESDALE CAMP	RED LION & KNIGHTS RD	0.0000	7.713	10.943	0.563	0.563	0.135	0.844

Figure 17 – TOR North Aerial View

Table 10 Detailed MON Information with Monitoring Station Picture

AMS SITE ID: MON

AQS Site ID: 421010076

Street Address: I-76 & Montgomery Drive, Car Barn OFM Shop 282

Geographical Coordinates

Latitude: 39.988842

Longitude: -75.207205

Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale	Monitoring Objective	Probe Height (m)	Begin Date
со	SLAMS	Near Road	Continuous	Instrumental	Gas Filter Correlation CO Analyzer		42101	1	093	Microscale	Highest Concentration, Source Oriented	5	1/10/2017
NO2	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemilumin escence		42602	1	099	Microscale	Highest Concentration, Source Oriented	5	7/1/2015
NO	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemilumin escence		42601	1	099	Microscale	Highest Concentration, Source Oriented	5	7/1/2015
NOx	SLAMS	Near Road	Continuous	Instrumental	Gas Phase Chemilumin escence		42603	1	099	Microscale	Highest Concentration, Source Oriented	5	7/1/2015
PM2.5 Continuous	SLAMS	Near Road	Continuous	Instrumental	BAM =Beta Attenuation Monitor Met One BAM - 1020		88101	1	170	Microscale	Highest Concentration, Source Oriented	5	7/1/2015

PM2.5 Continuous	SLAMS	Near Road	Continuous	Teledyne T640 at 5.0 LPM	Broadband Spectrosco Py	To replace existing MetOne BAM	88101		236	Neighborhood	Highest Concentration, Source Oriented		TBD
Black Carbon	SLAMS	Near Road	Continuous	Instrumental	Teledyne Model 633			1		Microscale	Highest Concentration, Source Oriented	5	7/1/2015
Ultrafine Particulate	SLAMS	Near Road	Continuous	Instrumental	Teledyne Model 651			1		Microscale	Highest Concentration, Source Oriented	5	7/1/2015
BaP	SLAMS	Near Road	1/6 days	Hi-Vol- SA/GMW-321- B	Gravimetric	Integrated samplers. Weighed by AMS. Analysis by Allegheny County, PA	17242	1	091	Microscale	Highest Concentration, Source Oriented	5	7/1/2015
Metals	Other	Near Road	1/6 days	Hi-Vol	ICP-MS	Analysis by WV (TSP sampler with quartz)	Vary	1	089	Neighborhood	Population Exposure	7	7/1/2015
Meteorological	SLAMS	Near Road	Continuous		Air quality measureme nts approved instrumentat ion for wind speed, wind direction, humidity, barometric pressure,rai nfall and solar radiation		Vary	1	Vary	Microscale	Highest Concentration, Source Oriented	5	7/1/2015

Figure 18 – MON Monitoring Site Map with Major Streets and Major Emission Sources

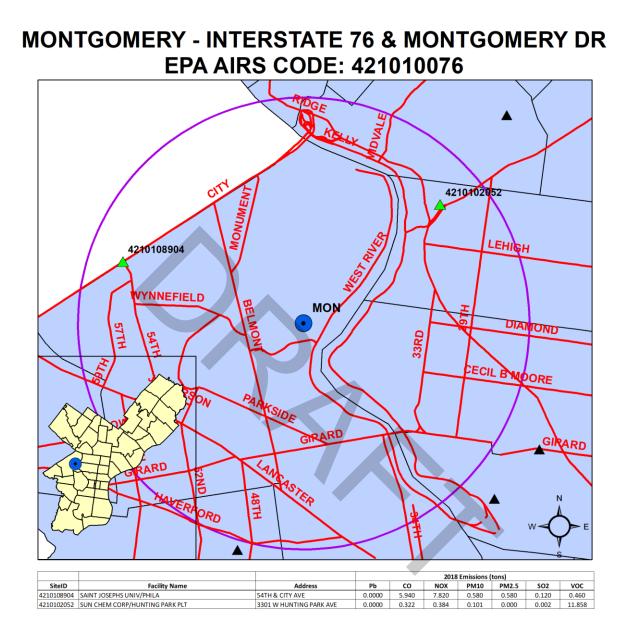


Figure 19 – MON North Aerial View

Table 11 – Detailed VGR Information with Monitoring Station Picture

Continuous

Meteorological

AMS SITE ID: V	GR					T	AND			
AQS Site ID:						. Children Chi				
Street Address:	: 6th & Arch Stree	ts								
Geographical C	oordinates									
Latitude: 39.	952608									
Longitude: -7	75.149704						A MAR AND	1		
Parameter	Monitoring Type	Monitor Network Affiliation	Operating Schedule	Collection Method	Analysis Method	Comments	Parameter Code	POC	AQS Method	Spatial Scale
Ozone			Continuous	2B Technologies		Not in AQS				
PM2.5 Continuous			Continuous	Thermo		Not in AQS				
			0.1		Wind speed, wind					

Not in AQS

direction, humidity, temperature APPENDED IN

Probe Height (m)

Begin Date

3/15/2015

3/15/2015

3/15/2015

Monitoring Objective

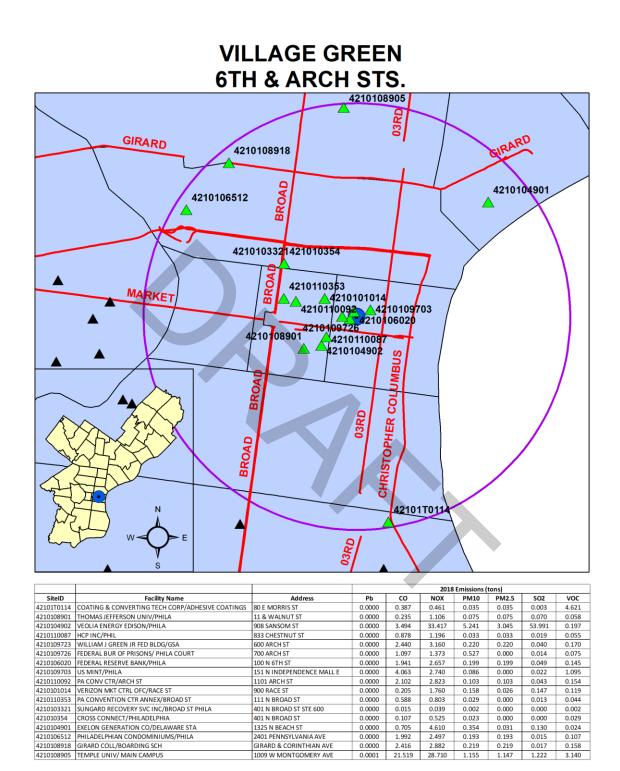


Figure 21 – VGR North Aerial View

Appendix A PAMS Implementation Network Plan

• >

PAMS Monitoring Implementation Network Plan

Monitoring Organizations Required To Operate At NCore Sites

Philadelphia Air Management Services operates one Photochemical Assessment Monitoring Stations (PAMS) site in the air monitoring network, at the NEW site, per the monitoring rule (80 FR 65292; October 26, 2015) which requires PAMS measurements June 1 through August 31 at NCore sites that are located in Core-Based Statistical Areas (CBSAs) with populations of 1,000,000 or more.

On December 20, 2019, the EPA finalized a revision to the start date for the updated PAMS monitoring site network established in 40 CFR part 58, Appendix D. This final action extended the start date from June 1, 2019, to June 1, 2021, giving state and local air monitoring agencies two additional years to acquire the necessary equipment and expertise needed to successfully make the required PAMS measurements by the start of the 2021 PAMS season.

Network Decision

The NCore site located at NEW serves as the location of the required PAMS site and measures the following parameters described below. An Inventory of equipment used at the site(s) is provided in Attachment 2.

Auto GC Decision

Volatile organic compounds (VOCs) – A complete list of the targeted compounds are found in Table 1.

We will measure hourly speciated VOC concentrations with an auto-gas chromatograph (GC) using the Consolidated Analytical Systems (CAS).

Meteorology Measurements Decision

We will measure mixing height using the Vaisala CL51 Ceilometer.

Other Required Measurements

- Carbonyls Carbonyl sampling at a frequency of three 8-hour samples on a one-in-three day basis (~90 samples per PAMS sampling season) using ATEC Sampler and Waters HPLC equipment for analysis. A complete list of the target carbonyl compounds may be found in Table 1. The TO-11A test method, as used in the National Air Toxics Trends (NATTS) program⁴ will be used.
- Nitrogen Oxides Will monitor for NO and NO_y (total oxides of nitrogen) in addition to true NO₂. The true NO₂ is required to be measured with a direct reading NO₂ analyzer, cavity attenuated phase shift (CAPS) spectroscopy or photolytic-converter NO_x analyzer. We will measure true NO2 using the Teledyne T500U. NO and NO_y will be measured using Teledyne instrumentation as well.

⁴ See NATTS Technical Assistance Document for TO-11A method.

	Priority Com	ound	le	Optional Compounds							
1				1							
1	1,2,3-trimethylbenzene ^a	19	n-hexane ^b	1	1,3,5-trimethylbenzene	19	m-diethlybenzene				
2	1,2,4-trimethylbenzene ^a	20	n-pentane	2	1-pentene	20	methylcyclohexane				
3	1-butene	21	o-ethyltoluene ^a	3	2,2-dimethylbutane	21	methylcyclopentane				
4	2,2,4-trimethylpentane ^b	22	o-xylene ^{a,b}	4	2,3,4-trimethylpentane	22	n-decane				
5	acetaldehyde ^{b,c}	23	p-ethyltoluene ^a	5	2,3-dimethylbutane	23	n-heptane				
6	acetone ^{c,d}	24	Propane	6	2,3-dimethylpentane	24	n-nonane				
7	benzene ^{a,b}	25	propylene	7	2,4-dimethylpentane	25	n-octane				
8	c-2-butene	26	styrene ^{a,b}	8	2-methylheptane	26	n-propylbenzene ^a				
9	ethane ^d	27	toluene ^{a,b}	9	2-methylhexane	27	n-undecane				
10	ethylbenzene ^{a,b}	28	t-2-butene	10	2-methylpentane	28	p-diethylbenzene				
11	Ethylene			11	3-methylheptane	29	t-2-pentene				
12	formaldehyde ^{b,c}			12	3-methylhexane	30	α/β-pinene				
13	Isobutane			13	3-methylpentane	31	1,3 butadiene ^b				
14	Isopentane			14	Acetylene	32	benzaldehyde ^c				
15	Isoprene			15	c-2-pentene	33	carbon tetrachloride ^b				
16	m&p-xylenes ^{a,b}			16	cyclohexane	34	Ethanol				
17	m-ethyltoluene ^a			17	cyclopentane	35	Tetrachloroethylene ^b				
18	n-butane			18	isopropylbenzene ^b						

Table 1 PAMS Target Compound List

Source: Revisions to the Photochemical Assessment Monitoring Stations Compound Target List.

U.S. EPA, November 20, 2013

^a Important SOAP (Secondary Organic Aerosols Precursor) Compounds ^b HAP (Hazardous Air Pollutant) Compounds

^c Carbonyl compounds

^d Non-reactive compounds, not considered to be VOC for regulatory purposes

Attachment 2 Equipment Inventory

Region	3
State	PA
Local	Philadelphia
AQS ID	42-101-0048
	Philadelphia- Camden- Wilmington, PA-NJ-
MSA	DE-MD

Parameter	Category	Detail
	Is the AQS site ID listed above the expected PAMS Core site location?	Yes
~	What is the status of the decision for the expected PAMS Core site location (not started, draft, or final)?	Final
Site	Is there an alternate PAMS Core site location selected?	No
	Identify type of alternative site (existing PAMS, NATTS, etc)	N/A
	Alternate site AQS ID (if known)	N/A
	Is there an existing functional ceilometer or other similar instrument available for use?	Yes
	current location (at future PAMS Core site, at other site, not applicable)	Final
	instrument type (ceilometer, radar profiler, etc)	Ceilometer
Mixing Height	manufacturer	Vaisala
	model	CL51
	date purchased	December 2017
	comments	Waiting on EPA update on data handling requirements
	Is there an existing Auto GC available for use?	Yes
	current location (at future PAMS Core site, at other site, not applicable)	Final
Auto GC	manufacturer	Consolidated Analytical Systems (CAS)
	model	INT-PAMS-01
	date purchased	2017
	Does it have a service contract?	Yes
	comments	Data in testing phase
	Is there an existing true NO2 instrument available for use?	Yes
True NO2	current location (at future PAMS Core site, at other site, not applicable)	Final
	instrument type (photolytic conversion, cavity ringdown, CAPS, etc)	Photolytic Conversion
	manufacturer	Teledyne

model	T500U
date purchased	December 2017
comments	NO, NOy at site

Carbonyls Sampling	Is there an existing sequential carbonyls sampling unit or similar instrument available for use?	Yes
	current location (at future PAMS Core site, at other site, not applicable)	PAMS Core site
	manufacturer	ATEC
	model	8000
	date purchased	2016
	comments	
Carbonyl Analysis	Does the site currently have a support laboratory for	Yes
	carbonyls or plans to use a support laboratory?	
	laboratory name	Philadelphia Air Management Services
		Laboratory
	comments	Waters HPLC
Barometric Pressure	instrument type (aneroid barometer, etc)	Yes - Electronic
	manufacturer	Vaisala
	model	WXT520
	date purchased	2013
	comments	
UV Radiation	instrument type (UV radiometer, etc)	Radiometer
	manufacturer	EPLAB
	model	TUVR
	date purchased	May 2019
	comments	
Solar Radiation	instrument type (pyranometer, etc)	Pyranometer
	manufacturer	Met-One
	model	095
	date purchased	May 2019
	comments	
Precipitation	instrument type (tipping bucket, weighing, etc)	Tipping Bucket
	manufacturer	Met-One
	model	375C
	date purchased	May 2019
	comments	

Appendix B Philadelphia Air Quality Survey

`>

Philadelphia Air Quality Survey Project Overview

Objectives

Although the City of Philadelphia has operated a network of EPA sponsored regulatory air monitoring stations for many years, the number of these stations is usually small, and the locations of the stations cannot reflect the neighborhood-to-neighborhood variances of air quality across the city. This project aims to fill the gap in air quality monitoring as mentioned above, and achieve the following objectives:

- 1) Set up street-level, neighborhood-oriented air sampling sites throughout the city to sample the air for about two years, and capture the seasonal changes and neighborhood-to-neighborhood spatial variances in air quality.
- 2) Measure the types of air pollution with major concerns, including PM_{2.5}, NO₂ (as vehicle emission indicator and ozone precursor), diesel vehicle emissions (using black carbon as indicator), and residual oil burning (using indicators such as SO₂, nickel, and vanadium).
- 3) Obtain quality assured and reliable data results that can serve as the basis for future work, including: provide policy recommendations for reducing pollution from congested city traffic, diesel vehicles and winter time fuel burning; analyze the relations between air quality and land use characters at neighborhood level and build a Land Use Regression model to predict air pollution levels and spatial variances in different neighborhoods; provide a basis for studying public health impact of air pollution in the city.

The site setup work (Objective 1 above) was finished in 2018. AMS will continue to maintain the sites and sample the ambient air at these locations.

Outputs

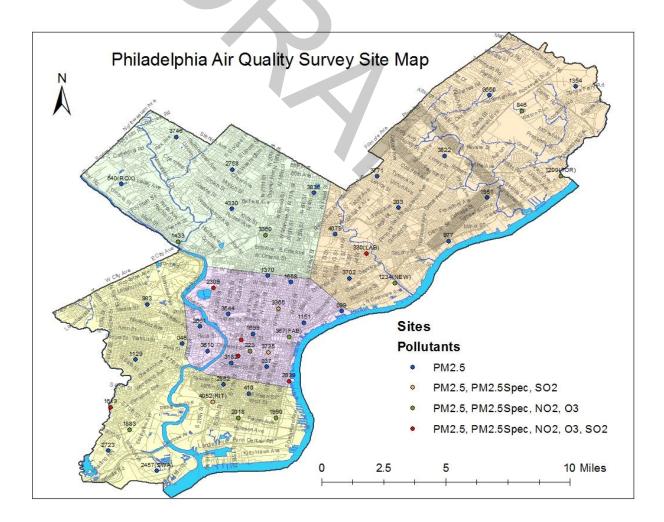
The project outputs will include data from the first ever city-wide street level air monitoring, which will indicate spatial variances of pollutant (PM_{2.5}, NO₂, SO₂, O₃) concentrations across different areas of the city.

Project Time Frame

The research and preparation work for the project have been ongoing since July 2016. The citywide air sampling operation started in May 2018, and will last about 24 months. A project report will be produced after at least 12 months' sampling results are obtained.

Project Design

Monitoring Sites


A grid of 300m x 300m cells are created over the city map using ArcGIS for the purposes of site selection, data processing, and air quality modeling in the future. A sampling site falls in one of these cells. 50 monitoring sites have been selected across the city (see the attached map). The entire city is divided into four quadrants (areas): Central, Northeast, Northwest, and South/Southwest. The Central Area is given larger number of sites and higher site density, considering the high density of population, traffic and buildings, and potentially larger gradients of pollutant concentration variances. Within each area, about 70% of the sites are randomly selected using GIS mapping techniques to make the data statistically representative. About 30% of the sites are determined as "purposeful" sites. Their locations are determined to serve one or more particular purposes. At each monitoring site, a portable sampling unit will be mounted on a utility pole about 10 - 12 feet above the ground.

Sampling Unit

The sampling unit contains a filter based $PM_{2.5}$ sample collector. At some of the sites, the sampling unit will also include NO_2 , SO_2 , and/or O_3 . passive samplers. The unit contains meteorological sensors as well.

Sampling Operation

The sampling unit operates on 2-week sampling cycles. Four sites, called "reference sites", will operate with consecutive 2-week sampling periods throughout the year. For the rest of the monitoring sites, sampling units will be rotated to cover the 46 sites in four operational sessions (batches) during a season, a three-month period. In each session of a season, 11 to 12 sites will be monitored at a time for a two-week sampling period. Then the sampling units will be moved to the next session of 11 to 12 sites. To avoid spatio-temporal confounding associated with different sites being monitored during different time windows, the sites in each operational session will be randomly selected.

